Questions for GMT seminar 4

December 16, 2014

1 Multiplicity of approximate tangent spaces

1.1 How unique is the multiplicity of approximate tangent spaces?

Suppose the equality in Definition 11.4 (p. 60) holds for all x with some fixed function θ. Is there a simple characterization of all other choices of multiplicities θ for which the equality holds (still globally, for all x)?
Clearly, we can rescale θ by a positive constant. What about rescaling θ with a continuous function? Are there other possible choices?

1.2 Discontinuities of θ

Do discontinuities of the multiplicity function θ have geometric interpretations?

1.3 Quadratic curves (suggested by Simon)

Consider the set

$$
Q=\left\{(x, y) \in \mathbb{R}^{2} \mid y=x^{2}\right\} \cup\left\{(x, y) \in \mathbb{R}^{2} \mid y=-x^{2}\right\} .
$$

At what points does it have an approximate tangent space? Which multiplicity functions are possible?

1.4 The topologist's sine curve

Consider the topologist's sine curve
$S=\left\{(x, y) \in \mathbb{R}^{2} \mid x=0,-1 \leq y \leq 1\right\} \cup\left\{(x, y) \in \mathbb{R}^{2} \mid 0<x<1, y=\sin (1 / x)\right\}$.
At what points does it have an approximate tangent space? Which multiplicity functions are possible?

Question 1: What is the geometric meaning of the "approximate tangent space" (Definition 11.4). How does that relate to the tangent space as defined in the usual way?

Question 2: At the end of page 63 Simon define the distance between two k-dimensional subspaces. What is the meaning of that definition?

Question 3: The most complicated proof of this weeks reading is the proof of Theorem 11.8. What is the idea behind that proof?

Questions from Andreas:

Question 4: Can you construct a counterexample to that claim that the function $y \mapsto H^{N-n}\left(f^{-1}(y) \cap A\right)$ is upper semicontinuous, where A is compact, f Lipschitz from $\mathbb{R}^{N} \rightarrow R^{n}$, and $N>n$.

Question 5: How would you prove that $H^{n}(O(A))=H^{n}(A)$ for any subset A in \mathbb{R}^{n} (not necessarily measurable) in \mathbb{R}^{n} and O is a linear orthogonal map.

Question 6: If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is Lipschitz, then for any subset A in \mathbb{R}^{n} and any $s>0, H^{s}(f(A)) \leq \operatorname{Lip}(f)^{s} H^{s}(A)$, where $\operatorname{Lip}(f)$ is the Lipschitz constant of f.

