4


Aktuell information för kursen SF1910/SF1925 Tillämpad statistik, 7.5 hp, för CSAMH2/CLGYM TEMI3,CLGYM TEDA3 och SF1917/SF1919 Sannolikhetslära och statistik, 6hp, för CENMI2,CLGYM MAFY3,CITEH2/CMETE2 period 2, HT 2025.
Här ges fortlöpande information om schemaändringar, vad som gåtts igenom på föreläsningar etc.

   

Administrativa ärenden

I ärenden som är administrativa kontakta studentoffice@math.kth.se

Tider och salar för Räknestugorna

Ons 26 nov kl 10-12,  sal F2  
Tor 4 dec kl 8-10,  sal F2 
Ons 12 dec kl 10-12,  sal E1

                          

 


                           Kontrollskrivning

Kontrollskrivningen Torsdagen 20/11 kl 8-10 omfattar kap 2-6.4 i kurslitteraturen.De studenter som får godkänt på kontrollskrivningen får tillgodoräkna sig uppgift 1-3 på del I på den ordinarie tentamen och på första omtentamenstillfället. Kontrollskrivningen kommer att bestå av 5 uppgifter. För att få godkänt krävs minst 3 rätt.Tillåtet hjälpmedel är miniräknare.


Datorlaborationer

Utöver föreläsningar och övningar innehåller kursen två frivilliga datorlaborationer. Studenter som godkänts på den andra av dessa laborationer får tillgodoräkna sig uppgift 12 på del I och får dessutom 3 bonuspoäng på del II av den ordinarie tentamen och det första omtentamenstillfället.

Laboration 1 är både en introduktion till hur man använder MATLAB i sannolikhetsteori och statistik och en förberedelse till den andra datorlaborationen. Den som hellre vill använda sig av Python får göra det, men det är ändå bra att titta igenom lab 1.

Laboration 2 som är den bonusgrundande datorlaborationen utförs i grupper om 2 studenter, men de skriftliga förberedelseuppgifterna ska lösas individuellt. Varje grupp kommer att få boka ett femton minuter långt redovisningstillfälle i datorsal. Både de skriftliga individuella förberedelseuppgifterna och laborationsuppgifterna måste vara färdigställda före redovisningstillfället. To 11/12 kl 13-17 respektive fre 12/12 kl 8-12. Det kommer inte att ges möjlighet till handledning i datorsal, men det finns möjlighet att i begränsad omfattning fråga övningsledarna om hjälp i samband med övningsundervisningen och räknestugorna.

Redovisningstillfällen för datorlaboration 2 kommer att bokas i kalendern i Canvas och detaljerad information om hur detta görs skickas ut under kursens gång efter kontrollskrivningen.

Syftet med datorlaborationerna är att ge en fördjupad förståelse för de begrepp och den teori som tas upp i kursen och samtliga studenter rekommenderas därför att delta på datorlaborationerna.


Föreläsningar

Föreläsningarna kommer att ges på sal. Efter varje föreläsning kommer jag att längst ner på denna sida under rubriken Föreläsningsdagbok skriva en kort sammanfattning av vad som gåtts igenom på varje föreläsning. Där finns även föreläsningsanteckningar som är just anteckningar av varierande utförlighet och kvalitet.

Inspelade föreläsningar

Det finns också inspelade föreläsningar.De ligger på media gallery på canvassidan. På sidan Videoföreläsningsdagbok finns en dagbok där huvuddragen av respektive föreläsning sammanfattats. Där står också hur lång respektive föreläsning är. Kolla det innan ni börjar titta. Eftersom de är inspelade så är de ibland utvidgade versioner av föreläsningarna jag håller på sal. Detta beror på att jag inte har behövt bestämma mig för om jag ska lägga dem på en nivå för de som bara vill ha godkänt eller på en nivå för de som vill ha lite mer fördjupning utan jag gör både och. Ljudet blir bättre om man använder hörlurar till sin laptop.

Övningar

Övningarna kommer att ges på sal. Även övningarna finns inspelade, (men är inte identiska med de som ges i direkttid på sal även om det oftast är samma uppgifter som gås igenom) och länkar till dem finns under respektive övning på länken Övningsplan , förutom övning 15 som ligger på media gallery på canvassidan.

Föreläsningsdagbok


Ons 13 nov kl 10-12 Skrev först upp täthetsfunktionen och fördelningsfunktionen för normalfördelningen. Skrev efter det upp täthetsfunktionen och fördelningsfunktionen för standardiserade normalfördelningen N(0,1). Skrev sedan upp att om X är N(E[X],D[X]) så gäller att Y=(X-E[X])/D[X] är N(0,1). Berättade sedan om när och hur man använder Tabell 1 och Tabell 2 i formelsamlingen och vad alfa-kvantilen är. Tog fram P(E[X]-kD[X] < X < E[X]+kD[X]) för k=2 när X är N(E[X],D[X]) som exempel på hur Tabell 1 används. Avslutade med att ta fram k när P(E[X]-kD[X]<X<E[X]+kD[X])=0.95 som exempel på hur Tabell 2 används. Började sedan med att skriva upp att varje linjärkombination av oberoende Normalfördelade stokastiska varaibler är Normalfördelad. Räknade exempel 6.2a,b som exempel på detta. Fortsatte med att med att gå igenom den viktiga Centrala Gränsvärdessatsen (CGS), som säger att summan av n oberoende likafördelade stokastiska variabler är approximativt normalfördelad om n är stort och att detta även medför att medelvärdet är approximativt normalfördelat. Gjorde sedan exempel 6.6 som exempel på C.G.S.

Ons 13 nov kl 8-10 Började med att repetera definitioner och begrepp från föregående föreläsning. Gick sedan igenom räkneregler för kovarianser och skrev upp att C(aX+bY,cZ+dW)=acC(X,Z)+adC(X,W)+bcC(Y,Z)+bdC(Y,W) vilket bl.a. leder till den viktiga regeln att V(X+Y)=V(X)+V(Y)+2C(X,Y) och att V(X+Y)=V(X)+V(Y) om X och Y är oberoende. Gick därefter igenom följande viktiga räkneregler för väntevärden och varianser: E(aX+bY+c)=aE(X)+bE(Y)+c V(aX+b)=V(aX)=a²V(X) samt om X och Y är oberoende V(X+Y)=V(X)+V(Y). Fortsatte med att ta fram väntevärde och standardavvikelse för medelväret av n st ober stokastiska variabler. Skrev sedan upp Stora talens lag. Gick sedan igenom beviset för Markovs olikhet. Använde sedan Markovs olikhet för att bevisa Stora talens lag och Tjebysjevs olikhet. Fortsatte med att skriva upp att uppmätt värde = korrekt värde+ systematiskt fel+ slumpmässigt fel, och att dålig noggrannhet är det samma som stort systematiskt fel medan dålig precision är det samma som stort slumpmässigt fel. Skrev sedan upp täthetsfunktionen och fördelningsfunktionen för normalfördelningen. Skrev efter det upp täthetsfunktionen och fördelningsfunktionen för standardiserade normalfördelningen N(0,1). Skrev sedan upp att om X är N(E[X],D[X]) så gäller att Y=(X-E[X])/D[X] är N(0,1). Berättade sedan om när och hur man använder Tabell 1 och Tabell 2 i formelsamlingen och vad alfa-kvantilen är. Tog fram P(E[X]-kD[X] < X < E[X]+kD[X]) för k=2 när X är N(E[X],D[X]) som exempel på hur Tabell 1 används. Avslutade med att ta fram k när P(E[X]-kD[X]<X<E[X]+kD[X])=0.95 som exempel på hur Tabell 2 används.


Tis 11 nov Avslutade först kapitel 4 med att som exempel på summa visa att summan av ober Poisonfördelade stok.var. är Poissonfördelad. Började sedan kapitel 5 med att berätta att väntevärdet är vad man får i genomsnitt om man gör oändligt många försök. T.ex. blir ju det genomsnittliga värdet av ett tärningskast 3.5. Gjorde sedan exempel 5.1 i boken,och räknade därigenom ut E(X). Skrev sedan upp definitionen för E(X) resp. E(g(X)) i det diskreta fallet och det kontinuerliga fallet. Gjorde sedan detsamma med E(g(X,Y)). Tog sedan och räknade ut E(X²) i Ex. 5.1 i boken. Definierade därefter variansen V(X) och standardavvikelsen D(X). Definierade därefter variansen V(X) och standardavvikelsen D(X). Definierade även variationskoefficienten R(X)=D(X)/E(X), och medianen xtilde som definieras av att P(X<xtilde)=0.5. Sedan använde jag mig även här av ex 5.1 i boken för att räkna ut variansen m.h.a. definitionen. Härledde sedan ur definitionen formeln V(X)=E(X²)-(E(X))² och räknade ut samma varians m.h.a. denna formel. Gick sedan igenom följande viktiga räkneregler för väntevärden och varianser: E(aX+bY+c)=aE(X)+bE(Y)+c,  V(aX+b)=V(aX)=a²V(X).  . Definierade sedan begreppet kovarians och och begreppet korrelationskoefficient och berättade om dess egenskaper. Visade också att V(X)=C(X,X). Gjorde avslutningsvis ex 5.13 i Blom för att visa att X och Y kan vara okorrelerade utan att vara oberoende.


Ons 5 nov Tog exempel 3.14 i läroboken som exempel på en blandad fördelning av diskreta och kontinuerliga stokastiska variabler. Avslutade kapitel 3 med att gå igenom funktioner av stokastiska variabler. Började med att gå igenom det diskreta fallet. Tog som exempel 3.16 i Blom. Gick sedan igenom det kontinuerliga fallet. Tog som exempel 3.19 och 3.20 i Blom. Började sedan kapitel 4 med att gå igenom flerdimensionella diskreta och kontinuerliga stokastiska variabler. Gick igenom begreppen simultan sannolikhetsfunktion repektive simultan täthetsfunktion och hur man ur dessa får fram den marginella sannolikhetsfunktionen respektive den marginella täthetsfunktionen och hur man vid oberoende även kan gå åt andra hållet. Visade också hur man räknar ut sannolikheter i det två-dimensionella diskreta och kontinuerliga fallet. Tog som exempel i kontinuerliga fallet uppg 14 på januaritentan 2024. Fortsatte med att visa hur man tar fram Fördelningsfunktionen för max(X,Y) och min(X,Y) utgående från Fördelningsfunktionerna för X respektive Y.


Tis 4 nov Började med att gå igenom Hypergeometriska fördelningen. Gick därefter igenom Binomialfördelningen. Påvisade skillnaden mellan den och Hypergeometriska fördelningen. Fortsatte sedan med med att gå igenom Poissonfördelningen och skrev upp satsen som säger att summan av oberoende Poissonfördelningar också är Poissonfördelad. Tog exempel 7.7 i Blom som exempel på detta. Började sedan med kontinuerliga stokastiska variabler. Definierade täthetsfunktionen och gick igenom hur man ur den får fram Fördelningsfunktionen och vice versa. Gick därefter igenom exponentialfördelningen. Fortsatte med att visa att tiden mellan två händelser är exponentialfördelad om antalet händelser är Poissonfördelat. Visade även att exponentialfördelningen saknar minne.Berättade att eftersom hela kapitel 6 ägnas åt Normalfördelningen gås den igenom då. Gick till sist igenom den likformiga fördelningen och tog som exempel på denna ex 3.9 i läroboken.


Tor 30 okt Började med att visa Bayes sats m.h.a. Venndiagram och tog exempel 2.19 som exempel på denna. Visade sedan ex 2.20 som en intressant tillämpning av Bayes sats. Fortsatte med att visa definitionen för oberoende utgående från betingningsformeln. Tog sedan exempel 2.23 som exempel på oberoende. Inledde sedan kapitel 3 med att gå igenom begreppet stokastisk variabel och definera sannolikhetsfunktionen. Tog som exempel på denna ex 3.1 i läroboken och ritade även upp stolpdiagrammet. Definierade sedan Fördelningsfunktionen och berättade om dess egenskaper. Tog som exempel på denna ex 3.1 i läroboken och ritade även upp den. Gick sedan igenom ett antal viktiga diskreta fördelningar. Började med tvåpunktsfördelningen och då speciellt Bernouillifördelningen. Fortsatte med för-första-gången-fördelningen och avslutade med den snarlika geometriska fördelningen.

Ons 29 okt Inledde kombinatoriken med multiplikationsprincipen och den klassiska sannolikhetsdefinitinen. Gick sedan igenom draging med återläggning med hänsyn till ordning och tog som exempel att antal pinkoder blir 10^4 eftersom antal kombinationer när man drar k ggr från n element blir n^k. Som exempel på dragning utan återläggning med hänsyn till ordning tog jag sedan en förening med 8 medlemmar som skulle välja ordförande,sekreterare och kassör vilket ger 8 ggr 7 ggr 6 kombinationer. Allmänna fallet n!/(n-k)! kombinationer. Gick sedan igenom dragning utan återläggning utan hänsyn till ordning. Tog som exempel hur många pokergivar det finns. 52!/(5! ggr 47!). D.v.s. 52 över 5 gånger. I allmänna fallet har vi n över k kombinationer. Gick därefter igenom sannolikheten att vid n dragningar utan återläggning utan hänsyn till ordning dra k gula kulor från g gula och n-k blå kulor från b blå. Utvidgade sedan detta till sannolikheten att dra k gula; l blå och r röda o.s.v när man har f färger. Började sedan med betingad sannolikhet. Illustrerade betingningsformeln m.h.a. exemplet på sid 26 i läroboken. Visade lagen om total sannolikhet m.h.a. Venndiagram och tog exempel 2.17 som exempel på denna.


Tis 28 okt Presenterade först kursens hemsida och visade olika länkar och dess innehåll. Fortsatte sedan med att ge exempel på olika användningsområden som ämnet matematisk statistik har och denna kurs ger en introduktion till. Började sedan med att gå igenom utfall,utfallsrum,händelser.Förklarade därefter skillnaden mellan diskret och kontinuerlig fördelning. Tog övningsuppgift 2.1a och b som exempel på diskreta utfallsrum. Gick sedan igenom snitt, union, komplement och visade hur man med hjälp av Venndiagram räknar ut sannolikheter. Definierade i samband med detta disjunkthet.









 


Sidansvarig: Björn-Olof Skytt
Uppdaterad: 2022-10-24