Course Log SF2943
(former SF2945)
Time Series , Spring 2013. Information on Lectures and Handouts
-
The registration for the exam
via mina sidor is open
from 2013-04-15 to 2013-05-05 .
-
- Lecture 18 15.05.2013 Kalman Filtering lecture
- Lecture 15 06.05.2013 (Not an Exercise session ! )
- Lecture 14 03.05.2013. ARIMA(p,d,q), Nelson-Beveridge decomposition
- Thursday 02.05.2013. Exercises Lecture Hall is Q34
- Lecture 13, 30.04.2013. Innovations algorithm and factorization of covariance (Toeplitz) matrices (see pdf), Hannan -Rissanen algorithm BD 5.2, order selection 5.3-5.5 pdf
- Lecture 12, 24.04.2013. Yule Waler estimation an AR(p)-process, 5.1.1, Innovations algorithm and likelihood, yuwaest.m, From Matlab system identification toolbox: arx.m armax.m pdf
- Lecture 11, 23.04.2013. Periodogram (examples), Linear difference equations for ACVF, LTI pdf
- Lecture 10, 18.04.2013. Periodogram BD 4.2
- Lecture 9, 17.04.2013. Spectral density BD 4.1
- Lecture 8, 11.04.2013. Innovations algorithm, One-step prediciton of ARMA(p,q) BD 2.5.2. 3.3.
- Lecture 7, 10.04.2013. Arma(p,q) -process, ACVF , BD 3.1 3.2.
- Lecture 6, 09.04.2013. Arma(p,q) -process, causality, invertibility, BD 3.1.
- Lecture 5, 28.03.2013. Prediction and projection pdf .
- Lecture 4, 27.03.2013. Estimation of mean, prediction and projections
sections 2.4 in BD .
- Lecture 3, 21.03.2013. definition and conditions for convergence in mean square (see the handout below), system polynomials, Cauchy product formula, AR(1) as linear process, ARMA(1,1) as a linear process, sections 2.2 2.3 in BD .
- MULTIVARIATE GAUSSIAN DISTRIBUTION.
pdf
- CONVERGENCE IN MEAN SQUARE AND CAUSAL LINEAR PROCESSES.
pdf
- Lecture 2, 20.03.2013. section 1.5.2: more on ACVF, stationary processes AR(1), MA(1), time series decomposition, trend, seasonal component, difference operator, shift operator. section 2.1 .
- Lecture 1, 26.10.2009. section 1.3, section 1.4: What are time series ? stationary models, autocovariance function (acvf) and its properties
Last change 2013-03- 21
|