Aktuell information - current information


On this page we will give information on what has been treated during the lectures, time and room changes and computer exercises e.t.c.

Lecture information

      2011-05-16

      GE: 17.4-17.6 Gibbs sampler, Ising Model

      2011-05-13

      McMC: Reversible jumps pdf

      2011-05-11

      McMC: Metropolis-Hastings on continuous spaces pdf

      2011-05-09

      McMC: Metropolis-Hastings on discrete spaces pdf

      2011-05-06

      Model choice III: GE 16.8 AIC, -16.9. BIC least squares.pdf

      2011-05-04

      Model choice II: GE 16.5-16.7. Q_PRED , Crossvalidation, Model choice bias. least squares.pdf

      2011-05-02

      Model choice I: GE 16.1-16.4.

      2011-04-28

      Tolerance intervals intervals (k-factor) for normal distribution, bootstrapped content correction. pdf
      Bayesian statistics pdf

      2011-04-27

      Bootstrap percentile intervals for a parameter. Percentile interval lemma. BC-alpha.Chapter 13 in GE. Tolerance intervals and prediction intervals pdf

      2011-04-15

      Bootstrap confidence intervals for a parameter based on a pivotal variable. Variance stabilization. Chapter 12:1-12.5 in GE.

      2011-04-14

      Estimation of standard error by delta method. Rest of Ch. 11: Bootstrap consistency. Vector representation excluded this time.

      2011-04-13

      Rest of Ch. 10: bootstrap of AR(1)
      • Transparencies about AR(1) pdf

      • Bootstrap of AR(1) and Matlab pdf

      • Statistical functionals and the influence function

      2011-04-07

      Rest of Ch. 9: Jackknife, pseudovalues, jackknife biasestimate Ch. 10 Bootstrap of regression parameter b
      • Transparencies about regression pdf

      • Bootstrap of regression and Matlab pdf

    • 2011-04-06

      Chapter 8: bias and unbiasedness. Bootstrap estimate of bias. Bias and bootstrap bias estimate for the plug-in estimate of variance. Bootstrap bias corrected estimates, an exact calculus for median (of Exp(1)). Chapter 9.1-9.4: Jackknife, thm.9.1,
      Manipulating sums pdf
    • 2011-04-04

      Chapter 6 in GE: Chapter 7.3: 7.3.1. Bootstrap distribution of the median. The exact bootstrap distribution, the exact bootstrap standard error of the median.
      The order statistics for the exponential distribution pdf
      7.4.2.: Variance of the median for I.I.D.- samples of the exponential distribution.
      Chapter 8: bias and unbiasedness. Bootstrap estimate of bias. Bias and bias estimate for the plug-in estimate of mean.
    • 2011-04-01

      Chapter 6 in GE: Bootstrap confidence intervals for a a scale parameter. Chapter 7: 7.2.1. Bootstrap of mean and estimation of standard error of mean. 7.2.2. Parametric bootstrap. 7.4: Bias of the bootstrap standard error.
    • 2011-03-30

      Chapter 5 in GE: Bootstrap gives a new probability space, bootstrap variables, bootstrap sample, bootstrap hypothesis, parametric bootstrap.
      Examples of bootstrap: skew normal distribution, its mean, variance, skewness and kurtosis, simulation, estimator a parameter, bootstrapping the estimator. Law school data.
      • Skew-normal distribution: first properties pdf

      • Bootstrap analysis of the estimator for the parameter in a skew-normal distribution pdf

    • 2011-03-28

      Chapter 4 in GE: Bootstrap as a new probability space, bootstrap hypothesis, bootstrap sample, non-parametric, parametric bootstrap. Example: standard error of the estimator of theta in Be(theta). Bootstrap in Matlab. The number different of bootstrap samples, a formula of combinatorics.
      • Bootstrap analysis of example 4.3.1. pdf

      • Scale parameter pdf

    • 2011-03-25

      Chapter 3.2 - 3.6 in GE: empirical distribution, plug-in estimator, examples of plug-in estimators, bias of an estimator, standard errorof an estimator, distributions of estimators, confidence intervals and pivotal variables.
    • 2011-03-23

      Chapter 2 in GE: The inverse method of generation of random numbers, Box-Muller, Simulation of multivariate normal random variables. Estimation of the coefficient of correlation, Fisher's variance stabilization. Chapter 3.1 in GE: Statistical inference, nuisance parameters, pivotal variables.
    • AUXILIARY NOTES ON THE MULTIVARIATE NORMAL DISTRIBUTION pdf

    • 2011-03-21

      Introduction and overview of the course. Start with chapter 2 on simulation. Linear congruence generators and randomness. Tests of randomness.
      • RANDOM GENERATORS AND TESTS OF RANDOMNESS pdf

      • TESTS OF RANDOMNESS a link


[Kurshemsidan]     [Kursförteckning]     [Avdelningen Matematisk statistik]
Sidansvarig: Timo Koski
Uppdaterad: 2011-02-10